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Experiments on ‘head-on ’ collisions between two solitary waves show that the 
wava reach a maximum amplitude greater than twice the initial wave amplitude 
and that they suffer a time delay during their interaction. These results are 
compared with available theories and found to be in qualitative but not 
quantitative agreement. 

1. Introduction 
Maxworthy & Redekopp (1976) have recently proposed a new explanation for 

many of the features seen in Jupiter’s atmosphere based on the properties of 
solitary waves in a horizontally sheared, stratified atmosphere on a p-plane. 
Such waves have a horizontal structure that obeys the modified Korteweg- 
de Vries (KdV) equation, an equation which is known to have solutions with 
many interesting features; in particular, solitary waves of very simple form are 
possible (see, for example, Hirota 1972). Much of the work on this subject has 
been reviewed by Scott, Chu & McLaughlin (1973), and the interested reader is 
advised to go there and to Whitham (1974) for some of the background material. 

One of the major interests in the Jovian case is in the types of interaction that 
can occur between solitary waves, especially in reality, where dissipation and 
substantial ‘vertical’ accelerations can exist. Since shallow-water waves are 
known to obey the closely related KdV equation, it was decided to study such 
interactions in shallow water as a logical first step towards an understanding of 
the atmospheric case. The simplest of these interactions, from an experimental 
point of view at least, is the direct, head-on collision between two waves of equal 
amplitude travelling in opposite directions. Since the system is symmetric about 
the mid-plane it can be modelled by a single wave hitting a vertical end wall (but 
see below for comments on this suggestion). In  $ 2  we describe the apparatus 
needed to perform this experiment and in $ 3 the results. 

There have been a number of attempts to study the problem theoretically to 
various degrees of approximation and using a variety of methods. I n  $ 4  we 
review these theories and compare the predictions made by or inferred from them 
with the results of the present experiment. 

2. Apparatus and procedure 
The interaction was studied in two modifications of a single wave tank (5  m 

long, 20 cm wide and 30 cm deep). Water depths h, between 4.5 and 6.7 cm 
I2 PLM 76 
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FIGURE 1. (a )  Wave tank used to observe solitary-wave reflexions, showing method of 
wave production. ( b )  Same tank as in (a)  but with extended ends and partitions to contain 
dammed-up fluid which, when released, produced solitary waves. 

were used. A composite diagram of the apparatus is shown in figure 1. In  order 
to study wave reflexion from a vertical wall, waves were produced by pulling a 
flat plate through the tank. Since it is well known that any initial disturbance 
will result in a sequence of ordered solitary waves plus a dispersive wave train 
(Segur 1973)) one can, by judiciously varying the plate amplitude and velocity, 
produce single or multiple solitary waves with a minimum of other wave 
disturbances (wave amplitudes Ah of up to 0.5 h,, were used). Because the results 
obtained in this case were thought to be unusual at the time, it was suggested 
by several colleagues that perhaps the wave-reflexion case was not the same, in 
some subtle way, as the case of two waves interacting directly. As a result, two 
end tanks with movable partitions were added to each end of the long tank and 
waves were produced by their emergence from an initial square pulse (figure I b). 
Again, by adjusting the length and height of the dammed-up fluid, sequences of 
one, two or more solitary waves could be produced a t  each end. They then 
propagated towards each other to interact at  the centre of the tank. 

Date were taken photographically at 64 framesls and reduced by projecting 
onto a screen and measuring displacements, vertical heights and wave shapes by 
hand. Scales of length and time could be placed in the field of view of the camera 
in order to calibrate the system. 

3. Results 
In  figure 2 we show the most significant result of these experiments, for a 

typical initial wave amplitude. The spatial phase shift in the wave trajectories 
is negative, that is the reflected wave appears to have come from a virtual origin 
behind the real wall or alternatively it appears to hesitate at  the wall and reflects 
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FIGURE 2. Typical wave trajectory, i.e. motion of point of maximum amplitude, in dimen- 
sionless co-ordinates, showing spatial phase change of the wave crest due to finite time of 
interaction a t  the wall. Ah/ho = 0.31. Speed of incident wave: theoretical value = 92.55 
m / s ;  measured value = 93 cm/s. 

such that it reaches a point downstream delayed in time. Figure 3 shows the 
magnitude of the phase shift for a variety of initial depths and wave amplitudes 
and for the two cases of direct wave-wave interaction and wave reflexion. From 
this figure it is clear that the magnitude of the phase shift is independent of the 
wave amplitude and does not depend on the type of interaction, within the large 
experimental error. Unfortunately, waves of very small amplitude could not be 
measured, so that it is not possible to say whether or not the curve remains at a 
finite level as one might suspect on elementary grounds (see $4) or whether i t  
tends to zero phase shift for very small amplitudes, as available theories suggest. 

In  figure 4 we see that the maximum amplitude attained by the wave during 
interaction is always greater than twice the initial wave amplitude. Here we 
note that this amplitude does tend to zero as the initial amplitude tends to zero 
and that, because of viscous and wetting effects a t  the wall, this case has a 
maximum amplitude less than that for wave-wave interaction. This latter case 
also contains effects due to surface tension at the wave peak, which creates a 
rather distorted surface that adds to the discrepancy between the two results 
(see $4). 

12-2 
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FIGURE 3. Magnitude of phase shift AX/h, vs. wave amplitude Ah/& for several values of 
h ,  and for both types of interaction, i.c. wave-wave interaction (triangles) and end-wall 
reflexion (squares). - - -, Oikawa & Yajima (1973) and implicit result from Byatt- 
Smith (1971). 

Details of typical interactions at a moderate amplitude of Ah/ho = 0.31 are 
shown in figure 5.  Several points are worth noting. First, the incoming wave 
shape is very closely approximated by the classical expression (figure 5a);  it  is 
imperceptibly steeper, an effect which is, presumably, accounted for by higher- 
order corrections to the calculated profile. During the interaction with the wall 
(figures 5 b-g) vertical fluid accelerations are large and any theory that purports 
to describe the motion must take them into account (see $4 for a detailed 
discussion). The reflected wave (figures 5h , i )  assumes a shape that is clearly 
steeper than that of the incoming wave and is, in fact, moving slightly faster (see 
figure 2). There is also a clear indication of a second, weaker wave following the 
first, an effect which is enhanced at higher amplitudes (figure 6). 

4. Discussion and conclusions 
Comparison of the present results with available theoretical efforts is hampered 

by the somewhat confused state of the latter. In what follows we present what 
seems to be the current state, realizing that more analysis needs to be done. 
A first fundamental concern is with the equation or set of equations to be used 
to describe the interaction under consideration. One commonly used and basic 
pair of equations (see, for example, Byatt-Smith 1971, equations (1.2) and (1.3)) 
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FIQURE 4. Maximum amplitude Ah,&,, attained by wave during interaction us. initial 
wave amplitude Ah/ho. A, wave-wave interaction; ., end-wall reflexion. Also included 
are the results of Byatt-Smith (1971) and experimental and numerical values reported 
in Chan & Street (1970) 

is due to Boussinesq (1872), who also combined them into one equation (Byatt- 
Smith 1971, equation (1.4)), which has often been interpreted as being suitable 
for describing waves travelling in two directions. However, as pointed out by 
Long (1964), one fundamental assumption made during the simplification is that 
the waves travel in only one direction. Also, Byatt-Smith (1971) has shown that 
the single equation ignores unsteady terms of order (Ah/hJ2 which are present 
in the pair of equations. Thus any solution based on the reduced equation is 
unlikely to be correct, and in fact, Hirota (1973) and the first solution presented 
in Oikawa & Yajima (1973) predict a phase shift of opposite sign to that found 
experimentally and a maximum amplitude less than twice the initial wave 
height ! 

The first solution to a corrected, single equation appears to have been given 
by Byatt-Smith (1971), who obtained an implicit result for the phase shift which 
is in agreement with the explicit result obtained later by Oikawa & Yajima 
(1973), from the pair of Boussinesq equations (Dr P. D. Weidman, private 
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FIQUF~E 5. Wave profiles traced from a moving-picture sequence of the interaction of a 
single wave with the tank end wall for a moderate initial amplitude, Ah/& = 0.31. 
(a) 0 6. ( b )  0.35 s. (c) 0.43 s. ( d )  0.54. (e) 0.67 s. ( f )  0.73 s. (9) 0.80 s. (h)  1.02 s. (i) 1.19 s. 
Note the change in amplitude from (c) to ( d )  to ( e )  in a very short time. 

communication). This result is plotted in figure 3. Byatt-Smith did obtain an 
explicit expression for the maximum height reached by the wave and this is 
plotted on figure 4. I n  both cases the more complete single equation (derived by 
Byatt-Smith 1971) or the set of equations gives results that are in qualitative 
agreement with the experiments; i.e. the phase shift is in the observed direction 
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FJGURE 7.  Sketch from an actual experiment showing the distorted wave peak formed 
during a wave-wave interaction at large initial amplitude. 

FIUURE 8. Sketch of w&ve-wave interaction showing stagnation of the horizontal particle 
velocity and production of a vertical velocity that elevates the fluid surface in a time of 
order ho/Vo. 
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and the maximum amplitude is greater than twice the initial amplitude. Also 
shown in figure 4 are some experimental results and a numerical solution presented 
by Chan & Street (1970), who, unfortunately, did not measure or calculate the 
phase shift. Had they done so the present work would have been superfluous. 
We suspect that  the small difference between their results and the present 
experiments, for wave interaction with a vertical wall, are due to a combination 
of effects: first, a t  small initial amplitudes, experimental errors due to our 
inability to define precisely the wave surface because of the effects of a variable 
side-wall wetting angle and second, at large initial amplitudes, the relatively 
greater importance of viscous and end-wall wetting effects in our smaller tank. 
It is clear that the maximum amplitude reached by the wave right a t  the end 
wall is very sensitive to the latter effects, which are absent in our wave-wave 
interaction experiments. As a result i t  is tempting to say that the latter results 
are the correct ones. Unfortunately this statement is weakened by the observa- 
tion that, especially at large initial amplitudes, the vertical accelerations tend to 
create a jet-like flow at the wave peak which breaks down into individual drops, 
as sketched in figure 7. Because none of these extraneous effects are included in 
the theories, the comparisons shown on figure 4 are probably not too meaningful 
and the linear dependence on Ah/h, not to be taken too seriously. 

Finally, there is a theory due to Benney & Luke (1964), which has been 
criticized in Byatt-Smith (1971) and which predicts zero phase shift (Dr L. G .  
Redekopp, private communication) and a maximum height less than 2Ah.t 
Regrettably this theory, although correctly formulated, appears to contain 
algebraic errorst and will, presumably, agree with the other available theories 
when corrected. I n  all these theories the initial and final wave shapes are the 
same with no indication of the production of the secondary waves found 
experimentally. 

Thus, although some of the theories are in qualitative agreement with our 
experimental results there are quantitative differences. I n  particular, our 
discovery of a phase shift that is independent of initial amplitude seems to be 
significant and deserves some explanation. As a result we have constructed a 
simple order-of-magnitude argument that gives the correct result and contains 
the essential physics of the problem. 

Consider a wave of small amplitude Ah propagating on a shallow fluid layer 
of depth h,, so that its wave speed is O(gh,)& = O(&).  Associated with the wave 
motion is a horizontal particle velocity of order &Ah/h,. When two such waves 
interact ‘head-on ’ this horizontal motion is brought to rest and creates a vertical 
velocity also of order &Ah/ho (see figure 8 for a diagrammaticview of this process). 
The last estimate is based solely on the likelihood that the stagnation and turning 
process takes place in a region that is O(h,) in both vertical and horizontal extent 
as in classical stagnation-point flow (see for example Rosenhead 1963, p. 155). 
With thisvelocity estimate, the time taken for the wave to peak and return to its 
original position is O(h,/&) and thus finite for all amplitudes. The associated 
spatial phase delay is O(h,), as we have experimentally ! There now seem to be 

t Comments of a referee. 
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at least two possible reasons for the discrepancy between our experiment (and 
the order-of-magnitude argument given above) and the available theories. First, 
because of the large vertical accelerations that exist during the real interaction, 
the Boussinesq equations are inadequate and a new scaling procedure should be 
adopted to include higher-order effects that are a t  present ignored. Second, if the 
present equations are adequate one needs many more terms in the expansion 
before the experimental results are approached. Of the two possibilities the first 
appears to  be the most likely. 

Unfortunately, our order-of-magnitude arguments cannot be used to decide 
why the maximum amplitude during interaction is greater than twice the pre- 
interaction amplitude. This is because the amplitude is already of the correct 
order of magnitude, and the result depends on the subtle adjustment of the 
waves to their new condition and not on any gross, new dynamical feature. 

The paper was written while I was visiting the Max Planck Institut fur 
Strommungsforschung in Gottingen, West Germany, and the generosity of 
Professor E. A. Muller is gratefully acknowledged. I also benefited greatly from 
discussions with Professor Larry Redekopp and Dr P. D. Weidman during all 
phases of the work, and from the comments of areviewer and the Associate Editor 
to whom the manuscript was submitted, Professor J. W. Miles. The work was 
mpported by the National Aeronautics and Space Administration under grants 
NCR-05-018-178 a t  the University of Southern California and NAS7-100 a t  the 
Je t  Propulsion Laboratory, Caltech. 
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